Lighting Retrofit Case Studies in Brasília

Cláudia Naves David Amorim, University of Brasília, Brazil
BRAZIL

- South America
- **8,515,767,049 km²**
- 201.7 million of hab.
- Biggest country in South America, 5th in area and population in the world
- Very different climatic conditions in the territory
Brazil: renewable fuel on energy (hydroeletric and etanol)
Electricity consumption in Brazil

47.6% of consumption is in buildings

Source: Balanço Energético Nacional 2013 (Year 2012)
Energy consumption on public sector

- Consumption and energy prices are growing!!!
- Rains are scarce!

Fonte: BEN, 2013
Final uses of energy in non residential buildings in Brazil:

- 20% a 35% ARTIFICIAL LIGHTING
- 40% a 55% AIR CONDITIONING (Geller, 1991; Correia, 2007)

Large part of energy consumed to provide environmental comfort!
PBE EDIFICA
Energy efficiency labelling of buildings

New or existing buildings

From August 2014, obligatory to Federal public buildings!

- Building skin (30%)
- Lighting (30%)
- Air conditioning (40%)

IEA SHC Task 50: “Advanced Lighting Solutions for Retrofitting Buildings”
Brasilia

- 1960
- Planned by Lucio Costa and Oscar Niemeyer

Designed for 500,000 hab -> 2,200,000 hab (2015)
Climate – tropical savanna (Aw)
Latitude 15,55 S
Long. 48 W
*dry winter, humid summer

<table>
<thead>
<tr>
<th></th>
<th>jan</th>
<th>fev</th>
<th>mar*</th>
<th>abr</th>
<th>mai</th>
<th>jun**</th>
<th>jul</th>
<th>ago</th>
<th>set</th>
<th>out*</th>
<th>nov*</th>
<th>dez</th>
<th>ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>T mmês (ºC)</td>
<td>21,6</td>
<td>21,8</td>
<td>22,0</td>
<td>21,4</td>
<td>20,2</td>
<td>19,1</td>
<td>19,1</td>
<td>21,2</td>
<td>22,5</td>
<td>22,1</td>
<td>21,7</td>
<td>21,5</td>
<td>21,2</td>
</tr>
<tr>
<td>T mmmax (ºC)</td>
<td>26,9</td>
<td>26,7</td>
<td>27,1</td>
<td>26,6</td>
<td>25,7</td>
<td>25,2</td>
<td>25,1</td>
<td>27,3</td>
<td>28,3</td>
<td>27,5</td>
<td>26,6</td>
<td>26,2</td>
<td>26,6</td>
</tr>
<tr>
<td>Tm min (ºC)</td>
<td>17,4</td>
<td>17,4</td>
<td>17,5</td>
<td>16,8</td>
<td>15</td>
<td>13,3</td>
<td>12,9</td>
<td>14,6</td>
<td>16</td>
<td>17,4</td>
<td>17,5</td>
<td>17,5</td>
<td>16,1</td>
</tr>
<tr>
<td>Amp.méd (ºC)</td>
<td>9,5</td>
<td>9,3</td>
<td>9,6</td>
<td>9,8</td>
<td>10,7</td>
<td>11,9</td>
<td>12,2</td>
<td>12,7</td>
<td>12,3</td>
<td>10,1</td>
<td>9,1</td>
<td>8,7</td>
<td>11,2</td>
</tr>
<tr>
<td>Precipit. tot(mm)</td>
<td>241,4</td>
<td>214,7</td>
<td>188,9</td>
<td>123,8</td>
<td>39,3</td>
<td>8,8</td>
<td>11,8</td>
<td>12,8</td>
<td>51,9</td>
<td>172</td>
<td>238</td>
<td>248,6</td>
<td>1552</td>
</tr>
<tr>
<td>UR média (%)</td>
<td>76</td>
<td>77</td>
<td>76</td>
<td>75</td>
<td>68</td>
<td>61</td>
<td>56</td>
<td>49</td>
<td>53</td>
<td>66</td>
<td>75</td>
<td>79</td>
<td>67</td>
</tr>
<tr>
<td>Insolaç. tot(hor.)</td>
<td>157,4</td>
<td>157,5</td>
<td>180,9</td>
<td>201,1</td>
<td>234,3</td>
<td>253,4</td>
<td>265,3</td>
<td>262,9</td>
<td>203</td>
<td>168,2</td>
<td>142,5</td>
<td>138,1</td>
<td>2365</td>
</tr>
<tr>
<td>Nebulos. (0-10)</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Vel. vent. (m/s)</td>
<td>2,8</td>
<td>2,6</td>
<td>2,3</td>
<td>2,4</td>
<td>2,4</td>
<td>2,7</td>
<td>2,9</td>
<td>3,0</td>
<td>2,9</td>
<td>2,6</td>
<td>2,6</td>
<td>2,7</td>
<td>2,7</td>
</tr>
<tr>
<td>Direção ventos</td>
<td>NW</td>
<td>C-NE</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>C-NE</td>
<td>C-NW</td>
<td>NW</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>
Building skin

Tropical architecture?
RETROFIT...

Before

Original brise soleil

After...

Glazing facades

Setor Bancário Sul - Brasília
Case studies

<table>
<thead>
<tr>
<th>BUILDING NAME</th>
<th>DATE OF MONITORING</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. TCU</td>
<td>02/07/2014 eliminated</td>
</tr>
<tr>
<td>1. TJDFT</td>
<td>1.1. 25 and 27/06/2014 (winter -clear sky)</td>
</tr>
<tr>
<td></td>
<td>1.2. 16/01/2015 (summer – overcast sky)</td>
</tr>
<tr>
<td>2. MMA</td>
<td>2.1. 27/02/2015 (summer – overcast sky)</td>
</tr>
<tr>
<td></td>
<td>2.2. 30/06/2015 (winter – clear sky)</td>
</tr>
<tr>
<td>3. MME</td>
<td>Not monitored – DATA JUST FOR COMPARISON with MMA</td>
</tr>
</tbody>
</table>

IEA SHC Task 50: “Advanced Lighting Solutions for Retrofitting Buildings”
Case Studies

1. Forum of the Environment and Public Finance (TJDF-T)

New building - designed by arch. Siegbert Zanettini (2011)
Bilateral daylighting access
Positive facades
orientation (Nord/South)
External solar shading systems
Monitored room

• Illuminances
• Luminances

June 9 hs
• Directionality
User’s satisfaction:

• 60 questionaires (June and January-Slightly different)

Internal curtains always closed, artificial lighting on
2. Ministry of Environment (MMA) and Ministry of Energy (MME)
Case studies in Esplanade of Ministries – Brasilia

Ministry of Environment (MMA) Ministry of Energy (MME)

Total area: 19.873 m² (17.52 x 102.75 m) 9 floors + 3 underground

EAST FACADE: NO EXTERNAL SOLAR PROTECTION
WEST FACADE: BRISE SOLEIL

IEA SHC Task 50: “Advanced Lighting Solutions for Retrofitting Buildings”
Lighting retrofit MMA (monitored)

- Luminaires with T5 fluorescent lamps 4 x 28W

NO LIGHTING CONTROL SYSTEMS

Control solar film on facades
New divisories
- 7th floor – original
- 6th floor - retrofitted

Lighting retrofit MME (comparison)

Same lighting fixtures and other

AUTOMATED LIGHTING CONTROLS with possibility of individual dimming (each luminaire)
26.02.2015 9 a.m
Global hor illuminance
50.800 lux
Difuse 23.700 lux

26.02.2015 15 p.m.
Global hor il. 38.000 lux
Difuse 12.000 lux
MMA - Monitored rooms – 7th floor (pre retrofit)
ILLUMINANCES: MMA

Ambiente: Sala 724
Dia: 27/02/15 e 04/03/15 (medicação noturna)

<table>
<thead>
<tr>
<th>PONTO/HORÁ RIO</th>
<th>09:07 h</th>
<th>12:20 h</th>
<th>15:01 h</th>
<th>19:10 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>luz natural</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>luz artificial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7L-01</td>
<td>541</td>
<td>855</td>
<td>320</td>
<td>227</td>
</tr>
<tr>
<td>7L-02</td>
<td>1188</td>
<td>982</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>7L-03</td>
<td>220</td>
<td>277</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>7L-04</td>
<td>176</td>
<td>282</td>
<td>155</td>
<td>253</td>
</tr>
<tr>
<td>7L-05</td>
<td>1090</td>
<td>1212</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>7L-06</td>
<td>840</td>
<td>1127</td>
<td>233</td>
<td>387</td>
</tr>
<tr>
<td>7L-07</td>
<td>245</td>
<td>367</td>
<td>94</td>
<td>325</td>
</tr>
<tr>
<td>7L-08</td>
<td>252</td>
<td>305</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>7L-09</td>
<td>840</td>
<td>1220</td>
<td>190</td>
<td>318</td>
</tr>
<tr>
<td>7L-10</td>
<td>571</td>
<td>901</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>7L-11</td>
<td>208</td>
<td>200</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>7L-12</td>
<td>233</td>
<td>311</td>
<td>78</td>
<td>314</td>
</tr>
<tr>
<td>7L-13</td>
<td>219</td>
<td>213</td>
<td>87</td>
<td>332</td>
</tr>
<tr>
<td>7L-14</td>
<td>164</td>
<td>138</td>
<td>73</td>
<td>361</td>
</tr>
<tr>
<td>7L-15</td>
<td>355</td>
<td>281</td>
<td>120</td>
<td>258</td>
</tr>
<tr>
<td>7L-16</td>
<td>293</td>
<td>272</td>
<td>180</td>
<td>178</td>
</tr>
<tr>
<td>7L-17</td>
<td>302</td>
<td>396</td>
<td>149</td>
<td>180</td>
</tr>
<tr>
<td>7L-18</td>
<td>381</td>
<td>468</td>
<td>132</td>
<td>190</td>
</tr>
<tr>
<td>7L-19</td>
<td>3340</td>
<td>3160</td>
<td>666</td>
<td>369</td>
</tr>
<tr>
<td>7L-20</td>
<td>4180</td>
<td>4920</td>
<td>840</td>
<td>185</td>
</tr>
<tr>
<td>7L-21</td>
<td>292</td>
<td>318</td>
<td>145</td>
<td>250</td>
</tr>
<tr>
<td>média</td>
<td>758,57</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

IEA SHC Task 50: “Advanced Lighting Solutions for Retrofitting Buildings”

7L
DIRECTIONALITY: MMA
SALA 724 – ESFERA PERTO DA JANELA

Horário: 09:34 h

Olhando para a janela

Olhando contra a janela

\[E_{\text{max}} = 1320 \text{ lux} \ (4605 \text{ cd/m}^2) \]
\[E_{\text{min}} = 94 \text{ lux} \ (327 \text{ cd/m}^2) \]
\[E (v) = 4277 \text{ cd/m}^2 \]
\[E (s) = 594 \text{ lux} \ (2072 \text{ cd/m}^2) \]
\[(v)/E (s) = 2.06 \] (entre 2.0 e 2.5) – Forte
• Luminances

Users try to control glare
User’s satisfaction:

- 120 questionnaires in **four different situations:**
 - East facade pre and post retrofit
 - West facade pre and post retrofit
MME

• In 2013, a new effort was made to improve the lighting system: sensors, dimming in all lamps, automated and individual controls (lamps dimming) – Eco-System (Quantum) LUTRON

• Savings prevision: 9% /year

TO BE EVALUATED...
Preliminary results

• *In all buildings: glare, privacy, sun spots* are reasons to use curtains all the time

• Standard curtains are very bad for daylighting use... (there is no possibility to use daylighting from upper part of windows)
Preliminary Results

• *High influence of users behaviour* on energy consumption – even if they have very sophisticated lighting automated controls, they use very few daylighting (artificial lighting always on, closed curtains)

• *Artificial lighting always on*, even when curtains are opened
THE TEAM...

Márcia and Ludmilla

Marina R.

Marina P.

Julia
THANK YOU!
clamorim@unb.br