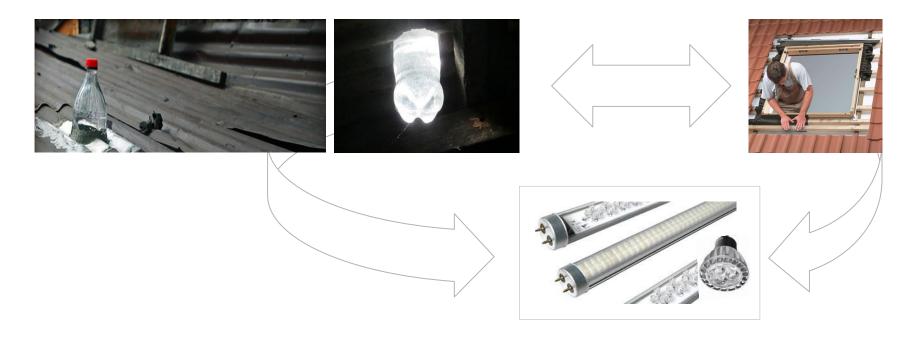
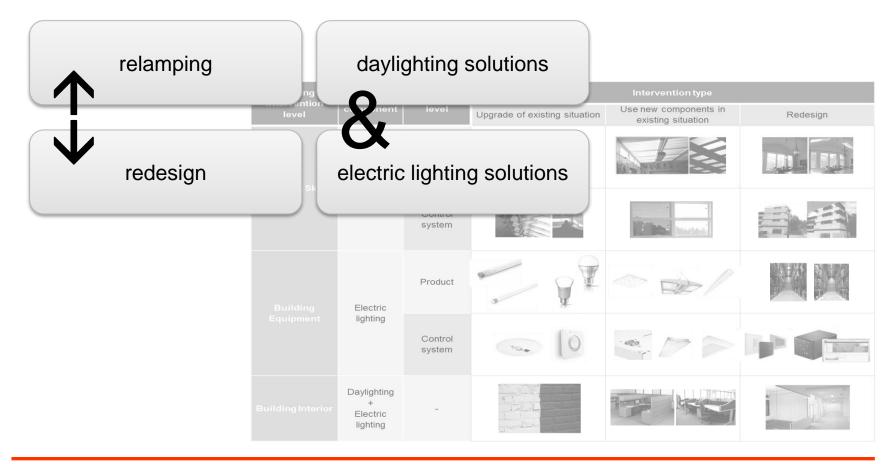
# Searching for adequate retrofit solutions – how to rate and compare lighting technologies


Martine Knoop | Chair of Lighting Technology, Technische Universität Berlin Subtask B Leader



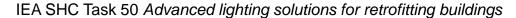



#### RATE AND COMPARE LIGHTING TECHNOLOGIES

Searching for adequate retrofit solutions – comparison of retrofit solutions on an equal basis






### COMPARE RETROFIT SOLUTIONS: LARGE VARIETY





### COMPARE RETROFIT SOLUTIONS: HOLISTIC APPROACH

daylighting solutions energy efficiency electric lighting solutions lighting quality thermal aspects running and inital costs





### EXAMPLE: CRITERIA FOR ENERGY EFFICIENCY

#### Daylighting

- Energy savings potential
- Light guiding into depth of the room
- Primarily using diffuse skylight
- Primarily using direct sunlight

#### **Electric Lighting**

- Energy savings potential
- Efficacy of component
- Directionality
   emitting angle / luminous flux reduction
- Power factor
- Dimmable



|                                         | 0.00                  | 0.25    | 0.5                            | 0.75     | 1.00                                              |
|-----------------------------------------|-----------------------|---------|--------------------------------|----------|---------------------------------------------------|
| energy savings<br>potential             | > -30%                | -30%10% | low<br>potential               | 10 – 30% | > 30%                                             |
| light guiding into<br>depth of the room | worse<br>distribution | no      | depends<br>on sky<br>condition |          | yes                                               |
| primarily using diffuse skylight        | no                    |         | yes                            |          | performs<br>well under both                       |
| primarily using direct sunlight         | no                    |         | yes                            |          | diffuse skylight<br>as well as<br>direct sunlight |



|                                      | 0.00                  | 0.25    | 0.5                            | 0.75     | 1.00                                              |     |
|--------------------------------------|-----------------------|---------|--------------------------------|----------|---------------------------------------------------|-----|
| energy savings<br>potential          | > -30%                | -30%10% | low<br>potential               | 10 – 30% | > 30%                                             | 50% |
| light guiding into depth of the room | worse<br>distribution | no      | depends<br>on sky<br>condition |          | yes                                               | 30% |
| primarily using diffuse skylight     | no                    |         | yes                            |          | performs<br>well under both                       | 10% |
| primarily using direct sunlight      | no                    |         | yes                            |          | diffuse skylight<br>as well as<br>direct sunlight | 10% |

SOLAR HEATING & COOLING PROGRAMME
INTERNATIONAL ENERGY AGENCY





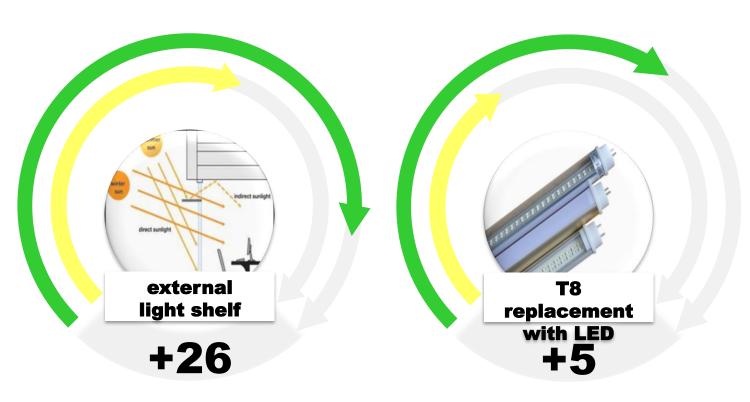



| external light shelf |      |
|----------------------|------|
| energy efficiency    | 0.73 |
| lighting quality     | 0.51 |
| thermal aspects      | 0.56 |
|                      |      |



| T8 replacement with LED |      |
|-------------------------|------|
| energy efficiency       | 0.73 |
| lighting quality        | 0.45 |

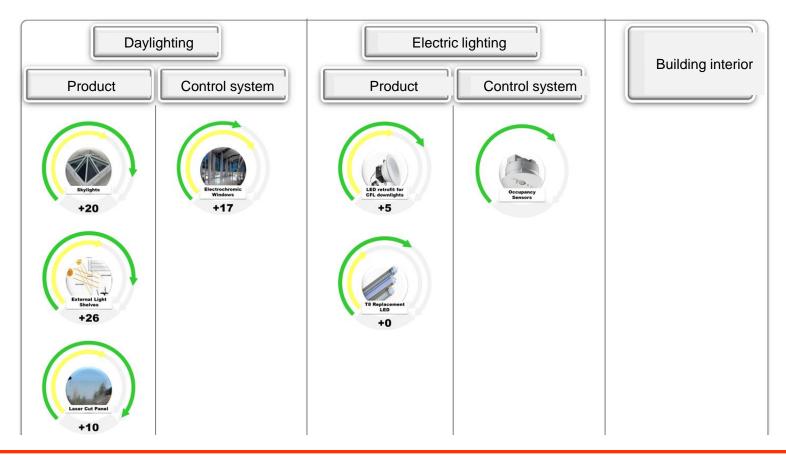
| initial costs | 0.63 |
|---------------|------|
| running costs | 0.25 |




| initial costs | 0.25 |
|---------------|------|
| running costs | 0.19 |

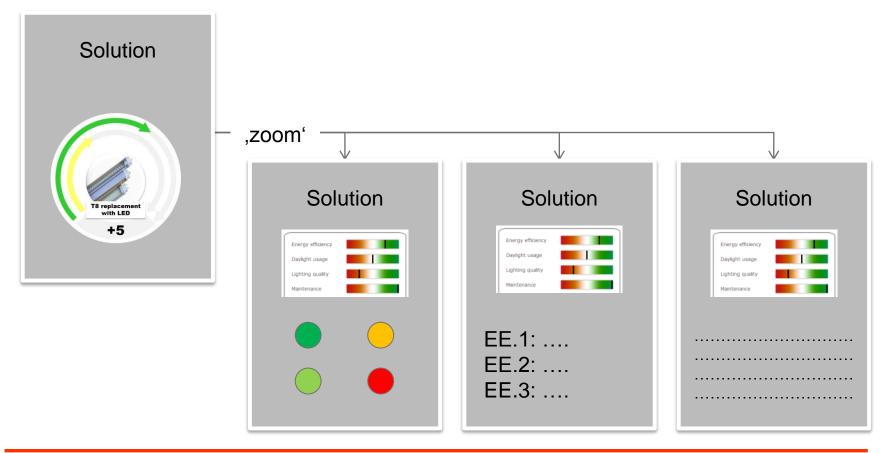
IEA SHC Task 50 Advanced lighting solutions for retrofitting buildings




#### REPRESENTATION








### MATRIX OF SOLUTIONS



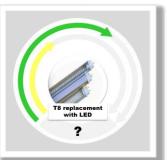


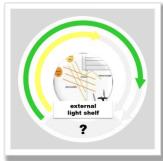
#### INFORMATION – TARGET GROUP SPECIFIC





### **VALIDATION OF APPLICABILITY**


| potential                           | > -30% -             | -30%10% | low                            |          |                                                   |     |  |
|-------------------------------------|----------------------|---------|--------------------------------|----------|---------------------------------------------------|-----|--|
| light guiding into                  |                      |         | potential                      | 10 – 30% | > 30%                                             | 5%  |  |
| 0 0                                 | worse<br>istribution | no      | depends<br>on sky<br>condition |          | yes                                               | 30  |  |
| primarily using<br>diffuse skylight | no                   |         | yes                            |          | performs<br>well under both                       | 10% |  |
| primarily using direct sunlight     | no                   |         | yes                            |          | diffuse skylight<br>as well as<br>direct sunlight | 10% |  |




## EXPERT WORKSHOP: TASK MEETING AND ONLINE QUESTIONNAIRE













# Contact: Martine Knoop – martine.knoop@tu-berlin.de

